Recruitment, effort, and retention effects of performance contracts for civil servants: Experimental evidence from Rwandan primary schools

Clare Leaver,* Owen Ozier† Pieter Serneels‡ and Andrew Zeitlin§

This version: June 20, 2019
PRELIMINARY AND INCOMPLETE

Abstract

Accumulating evidence suggests that pay-for-performance (P4P) contracts can elicit greater effort from incumbent civil servants, but less is known about how these contracts affect the composition of the public sector workforce. We provide the first experimental evidence of the impact of P4P on both the compositional and effort margins. In partnership with the Government of Rwanda, we implemented a ‘pay-for-percentile’ scheme (Barlevy and Neal 2012) in a novel two-tier experimental design. In the first tier, we randomly assigned teacher labor markets to either P4P or equivalent fixed-wage contracts. In the second tier, we implemented a ‘surprise’, school-level re-randomization, allowing us to separately identify the compositional effects of advertised P4P contracts and the effort effects of experienced P4P contracts. Our pre-analysis plan sets out a theoretical framework that helps to define a set of hypotheses, and conducts simulations on blinded data to develop high-powered tests. We find that P4P contracts did change the composition of the teaching workforce, drawing in individuals who were more money-oriented, as measured by a framed Dictator Game. But these recruits were not less effective teachers—if anything the reverse. On the effort margin, we observe substantial and statistically significant gains in teacher value added, mirrored in positive effects on teacher presence and observed pedagogy in the classroom. In Year 2, we estimate the total effect of P4P, across compositional and effort margins, to be 0.21 standard deviations of pupil learning. One quarter of this impact can be attributed to selection at the recruitment stage, with the remaining three-quarters arising from increased effort.

*Blavatnik School of Government, University of Oxford, CEPR, and RISE
†World Bank Development Research Group, BREAD, and IZA
‡School of International Development, University of East Anglia, IZA, RISE and EGAP
§McCourt School of Public Policy, Georgetown University, CGD, and IGC
1 Introduction

The ability to recruit, elicit effort from, and retain civil servants is a central challenge of state capacity in developing countries. Nowhere is this more evident than in the education sector, where rising access to government schooling has failed to translate into hoped-for learning gains, even as teacher salaries account for the bulk of expenditure on education and a large part of the civil service payroll (Das et al., 2017). Many developing country governments obtain poor skill and effort levels in return for their expenditure on the teaching workforce. For example, the World Bank’s Service Delivery Indicators for Uganda suggests that only 20 percent of primary school teachers have mastery of their content, while they are absent from school an average of 27 percent of the time (Bold et al., 2017). Yet teacher quality has important effects: both immediate, on student learning, and eventual, on later education and labor outcomes (Chetty et al., 2014a,b). Improved skills ultimately affect a country’s economic performance (Hanushek and Woessmann, 2012).

Accumulating evidence shows that pay-for-performance contracts can elicit improvements in effort from incumbent teachers, although these results are sensitive to design (Neal, 2011). Individual-teacher performance contracts have had persistent effects in India (Muralidharan, 2012; Muralidharan and Sundaramaraman, 2011) and Israel (Lavy, 2009) but evidence on school-level incentives is more mixed, e.g., in Kenya (Glewwe et al., 2010). Similarly, evaluations of teacher performance pay in wealthier countries have yielded generally mixed results, with incentive effects strongest among relatively inexperienced teachers and diluted as contracts pool teachers (Fryer, 2013; Fryer et al., 2012; Goodman and Turner, 2013; Imberman and Lovenheim, 2015; Lavy, 2009; Sojourner et al., 2014; Springer et al., 2010). However, little is known about how pay-for-performance contracts affect the composition of the teaching working force, or indeed the civil service more generally.\(^1\)

Given such mixed and missing evidence, a range of views prevail. The most pessimistic point to theories in public administration, social psychology and, more recently, behavioural economics (Bénabou and Tirole, 2003; Delfgaauw and Dur, 2007) to argue that pay-for-performance contracts will have negative effects on both compositional and effort-margins. In short, performance-pay: recruits the wrong types—individuals who are somehow ‘in it for the money’; lowers effort by reducing intrinsic motivation; and fails to retain the right types—good teachers become de-motivated and quit. By contrast, the most optimistic point to classic economic contract theory (Lazear, 2003; Rothstein, 2015) and evidence from the seminal work of Lazear (2000) on private-sector employees in jobs with readily measurable output to argue that pay-for-performance will have positive effects on both margins. Under this view, performance-pay: recruits the right types—individuals who anticipate performing well in the classroom; raises effort by increasing extrinsic motivation; and retains the right types—good teachers feel rewarded and stay put.

This paper seeks to inject new evidence into this debate. We provide what is to our knowledge the first prospective, experimental evaluation of not only the effort margin but also the compositional effects of pay-for-performance contracts for civil servants. As described below, we implement

\(^1\)There is a small but growing literature documenting the effects of more general contractual terms (e.g. pay levels) on compositional margins. For instance, in developing countries, higher pay attracts skilled and motivated workers to hardship posts (Dal Bó et al., 2013), and career track opportunities attract competent and motivated community health workers (Ashraf et al., 2016); promises of easy money attract but ultimately disappoint community health workers (Deserranno, 2017). In the U.S., low-performing teachers at risk of firing from a teacher accountability initiative in DC quit on their own (Dee and Wyckoff, 2015) and were replaced by people who did better (Adnot et al., 2016). Meanwhile, there is suggestive evidence both that higher value-added teachers have better earnings opportunities outside the classroom (Chingos and West, 2012) and that their retention is sensitive to pay (Clotfelter et al., 2008). Finally, Figlio and Kenny (2007) report evidence from US counties showing an association between performance pay and student outcomes that comprises both a compositional and incentive margin; Woessmann (2011) provides similar cross-sectional evidence at the country level.
a novel, two-stage experimental design that allows us to decompose the total effect of contractual
changes into their compositional and effort-margin components.

The study takes place in Rwanda’s primary education sector. As in most developing countries,
teachers represent a large part of the civil service and the bulk of the education budget (Kremer
and Holla, 2009). Teacher turnover is high in Rwanda—particularly for primary schools and in
rural districts—and replacement of lost teachers tends to be a lengthy process that often leaves
schools without qualified replacements for a period of at least a year. Rural districts struggle at
times to meet hiring targets, and face acute skill shortages, particularly in the upper-primary grades
(Primary 4–6) in which English has become the official language of instruction. Moreover, there is
evidence from the health sector in Rwanda that performance contracts may be effective motivators
(Basinga et al., 2011) and in fact teachers are currently the only part of the civil service to be
exempted from the imihigo system that ties a component of pay to measures of performance.

We worked with the Rwanda Education Board and Ministry of Education to design and im-
plement a pay-for-performance (hereafter P4P) contract based on the ‘pay for percentile’ scheme
(Barlevy and Neal, 2012). Building on extensive consultations and a pilot year, the contract
rewards the top 20 percent of teachers with extra pay, over and above their usual salary, using
a metric that combines information on both the learning outcomes in teachers’ classrooms, what
we term performance, and three measures of teachers’ inputs into the classroom: their presence
(measured through unannounced visits to schools), their preparation (measured through audits of
lesson plans), and their pedagogy (measured through classroom observations). Teachers are ranked
on each of these criteria, and their ‘4P’ score is computed as a weighted average, with performance
taking half of the weight and presence, preparation and pedagogy weighted equally and together
representing the other half.

Building on this contract, we undertake a two-tiered experiment (Ashraf et al., 2010; Cohen
and Dupas, 2010; Karlan and Zinman, 2009) that first randomly assigns labor markets to either
P4P or expected-value-equivalent fixed-wage (hereafter FW) advertisements, and then uses a sur-
prise re-randomization of experienced contracts at the school level to enable estimation of pure
compositional effects within each realized contract type. In the first stage—undertaken during
recruitment for teacher placements in the 2016 school year—we randomly assigned labor markets
to either P4P or FW contracts. We advertised extensively over radio, in flyers, at District Offices,
through WhatsApp networks of Teacher Training College alumni, and in job fairs, explaining that
all teachers who applied for teaching jobs in the relevant districts and were placed in upper-primary
teaching positions would be eligible for the relevant treatments. We then recruited into the study
all primary schools that received such a teacher to fill an upper-primary teaching role. In the
second stage of our experiment—undertaken once 2016 teacher placements had been finalized—we
randomly re-assigned these schools in their entirety to either P4P or FW contracts; all teachers,
including both newly placed recruits and incumbents, who taught core-curricular classes to upper-
primary students would be eligible for the relevant contracts. This was made incentive compatible
by effectively buying out recruits’ initial offers with a signing bonus, so that no recruit, regardless
of her belief about the probability of winning, could be made worse off by the re-randomization.

A second methodological contribution of the paper, in addition to the experimental design, is
the way in which we develop a pre-analysis plan. In our registered plan (AEARCTR-0002565), we
pose three questions. First, what outcomes to study? Second, what hypotheses to test for each
outcome? And third, how to test each hypothesis? In the pre-analysis plan, we answered the
what questions on the basis of theory, political relevance and available data. With these questions

Several recent papers have evaluated variants of the Barlevy and Neal pay-for-percentile scheme in education
contexts. See, e.g., Loyalka et al. (forthcoming) in China, Gilligan et al. (2018) in Uganda, and Mbiti et al. (2018) in
Tanzania.
settled, we then answered the how question using blinded data. Specifically, we used a blinded dataset that allowed us to learn about a subset of the statistical properties of our data without deriving hypotheses from realized treatment responses, as advocated by, e.g., Olken (2015).3 This approach achieves power gains by choosing from among specifications and test statistics on the basis of simulated power, while protecting against the risk of false positives that could arise if specifications were chosen specifically on the basis of their realized statistical significance in any real-world experiment.4 For an experimental study in which one important dimension of variation occurs at the labor-market level—and so is potentially limited in power—the gains from these specification choices are particularly important. The results reported in our pre-analysis plan demonstrate that, with specifications appropriately chosen, the study design is well powered, such that even null effects would be of both policy and academic interest.

Our main findings are as follows. First, while advertised P4P contracts did not change the distribution of measured teacher skill either in the applicant pool as a whole, or among new hires in particular, P4P contracts did select teachers who were more money-motivated in a framed Dictator Game that measured their intrinsic motivation. Second, in spite of this, teachers recruited under P4P were at least as effective as those recruited under fixed-wage contracts. These P4P recruits performed no worse than the fixed-wage recruits in terms of their presence, classroom conduct, or the learning outcomes of their students. Third, working under P4P contracts stimulated teachers to achieve better learning outcomes with their students than fixed-wage contracts. The improvement in student achievement was 0.09 standard deviations per year on average across the two years, and 0.16 standard deviations in the second year of the study. These gains in learning outcomes appear to be driven at least in part by improved teacher presence and classroom conduct. Teacher presence was 6 percentage points higher among recruits who experienced the P4P contract compared to recruits who experienced the fixed-wage contract. (A sizable impact given that baseline teacher presence was 90 percent.) Teachers who experienced P4P were more effective in their classroom practices than fixed-wage contract teachers by 0.26 points, as measured on a 4-point scale.

The net effect of being recruited to, and then working under, a P4P contract was an improvement in teacher value-added that resulted in 0.21 standard deviations of learning gain in the second year. We observe no differential selection out of these contracts during the period studied, and a post-evaluation survey confirms that teachers had a favorable view of the P4P contracts.5 Consequently, one quarter of the total impact of P4P in our study can be attributed to selection at the recruitment stage, with the remaining three quarters arising from increased effort.

The remainder of the paper is organized as follows. Section 2 sets out the study design in greater detail. Section 3 provides a detailed description of the data. Sections 4 and 5 report results, and Section 6 concludes.

3Although we have been unable to find examples undertaking such blinding in economics, Humphreys et al. (2013) argue for and undertake a related approach with partial endline data.

4The spirit of this approach is similar to recent work by Anderson and Magruder (2017) and Fafchamps and Labonne (2017). We forsake the opportunity to undertake exploratory analysis because our primary hypotheses were determined \textit{a priori} by theory and policy relevance. In return, we avoid having to discard part of our sample, with associated power loss.

5Teachers were asked for their overall opinion about the idea of providing bonus payments on the basis of objective measures of performance. More than 1,300 teachers responded, of whom 78 percent had a favourable opinion of performance pay on such an objective basis; only 12 percent were unfavourable; 7 percent were neutral.
2 Design

The study took place during the actual recruitment of civil service teaching jobs in upper primary in six districts of Rwanda in 2016. The design draws on the ‘surprise’ two-stage randomizations of Karlan and Zinman (2008), Ashraf, Berry, and Shapiro (2010), and Cohen and Dupas (2010) in credit-market and public-health contexts. Both tiers of this experiment are built around the comparison of two contracts regarding a bonus payment, on top of existing teacher salaries, and managed by Innovations for Poverty Action in coordination with the Rwanda Education Board (REB). The first of these contracts is a pay-for-performance contract, which pays RWF 100,000 (approximately 15 percent of annual salary) to the top 20 percent of upper-primary teachers within a district, as measured by a composite performance metric briefly described in the preceding section and detailed in the pre-analysis plan. The second is a fixed wage contract that provides RWF 20,000 to all upper-primary teachers. The second stage (surprise) randomization implies that applicants may experience a different contract from the advertised one to which they applied.

This design gives rise to four distinct types of recruits placed in schools, as summarized in Figure 1. Potential applicants—not all of whom are observed—are assigned to either advertised FW or advertised P4P contracts, depending on the labor market in which they reside. Those who actually apply and are placed into schools fall into one of four groups. For example, group ‘a’ in Figure 1 denotes teachers who applied to jobs advertised as FW, and who were placed in schools assigned to FW contracts, while group ‘c’ denotes teachers who applied to jobs advertised as FW and were then placed in schools re-randomized to P4P contracts. The key insight of such a surprise re-randomization is that comparisons between groups a and b, and between groups c and d, allow us to learn about a ‘pure’ compositional effect of pay-for-performance contracts on teacher performance in the school, whereas comparisons along the diagonal of a–d are informative about the total effect of such contracts, along both extensive and intensive margins.

Figure 1: Treatment groups among recruits placed in study schools

<table>
<thead>
<tr>
<th>Advertised</th>
<th>FW</th>
<th>P4P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experienced</td>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>P4P</td>
<td>c</td>
<td>d</td>
</tr>
</tbody>
</table>

The academic year in Rwanda runs from February–November, with new hires typically recruited between November and January. The timeline for the study was therefore as follows. In November 2015, as soon as districts revealed the positions to be filled, we announced the advertised contract assignment. In addition to radio, poster, and flyer advertisements, and the presence of a person to explain the advertised contracts at District Education Offices, we also held three job fairs at central locations to promote the interventions. These job fairs were advertised through WhatsApp networks of Teacher Training College graduates. Applications were then submitted in December. In January 2016, all districts held screening examinations for potential candidates. Successful candidates were placed into schools during February–March. We enrolled schools into the study on a rolling basis as they received recruits and allocated them to teaching positions in upper-primary

6 In Rwanda, upper primary refers to grades 4, 5, and 6; schools themselves typically include grades 1 through 6.
7 As described in Section 2.2 below, all recruits placed in study schools were offered a retention bonus of RWF 80,000 that ensured that they received at least as much under their realized contract as they could have expected under their advertised contract. There were no objections to or refusals of the rerandomization.
grades. Our baseline survey was conducted in March 2016. Schools were assigned to treatments immediately following the baseline survey. We then measured teacher inputs over the course of the 2016 and 2017 school years, and measured learning outcomes at the end of each of the two academic years.

2.1 First-tier randomization: Advertised contracts

Our aim in the first tier was to randomize distinct labour markets to contracts, since this would ‘treat’ all potential applicants in a given labour market with a particular contract enabling us to assess any selection response. Discussions with REB during 2015 indicated that (i) few individuals apply for teaching jobs in multiple districts, and (ii) individuals are eligible for jobs defined by their subject specialization (there are five subjects: math, science, English, Kinyarwanda, and social studies). Accordingly, in November 2015 we defined a labour market in terms of a district-by-subject pair and randomly assigned treatment across 30 pairs (6 districts x 5 subjects). All new primary posts within a P4P district-by-subject pair were to be advertised with a P4P contract, and all new primary posts within a FW district-by-subject pair were to be advertised with a FW contract.

In January 2016, we discovered that districts actually solicited applications at the slightly coarser district-by-subject-family level, aggregating subjects into three subject families that correspond to the degree types issued by Teacher Training Colleges: math and science (TMS); modern languages (TML); and social studies (TSS). We have 18 such labor markets defined by the product of district and subject family. The result of the randomized assignment is that 7 labor markets can be thought of as being in a ‘P4P only’ advertised treatment (modern language teaching in Gatsibo and Kirehe, math and science teaching in Kayonza and Nygatore, and social studies teaching in Ngoma, Nygatore, and Rwanagama); 7 in a ‘FW only’ advertised treatment (modern language teaching in Kayonza and Rwanagama, math and science teaching in Kirehe and Ngoma, and social studies teaching in Gatsibo, Kayonza, and Kirehe); and 4 in a ’Mixed’ advertised treatment (modern language teaching in Ngoma and Nygatore, and math and science teaching in Gatsibo and Rwanagama). To illustrate this Mixed treatment, an individual living in Ngoma with a qualification to teach modern languages could have applied to the modern languages pool, in which case they would have been eligible for either an advertised post in English on a FW contract, or an advertised post in Kinyarwanda on a P4P contract. In contrast, someone living in Gatsibo with a qualification to teach modern languages would have been subject to the ‘P4P only’ treatment; he/she could have applied for either an English or Kinyarwanda post, but both would have been on a P4P contract. Empirically, we will consider the Mixed treatment as a separate arm. We will estimate a corresponding advertisement effect but interpret this only as an incidental parameter.

This first-tier randomization was accompanied by an advertising campaign to increase awareness of the new posts and their associated contracts, including organization of job fairs at Teacher Training Colleges. As we discuss in Section 3 below, extensive data on potential applicants were collected at these job fairs. Advertisements also took place over the radio, in person at District Education Offices, and through dissemination of printed materials in capitals of the study districts. These advertisements emphasized that the contracts were available for recruits placed in the 2016 school year and that the payments would continue into the 2017 school year.

This randomization was performed in MATLAB by the PIs.
2.2 Second-tier randomization: Experienced contracts

Our aim in the second tier was to randomize the schools to which REB had allocated the new posts to contracts. A school was included in the sample if it had at least one new post that was filled and assigned to an upper-primary grade (grades 4, 5 and 6, hereafter P4, P5, and P6). Following a full baseline survey in February 2016, sample schools were randomly assigned to either P4P or Fixed Wage. Of the 164 schools in the second tier of the experiment, 85 were assigned to P4P and 79 were assigned to Fixed Wage contracts.

All upper-primary teachers within each school received the new contract. At individual applicant level, this amounted to re-randomization and hence a change to the initial assignment for some new recruits. To ensure that new contracts strictly dominated those advertised at the first tier, all new recruits were told that they would receive a retention bonus of 80,000 RWF if they remained in post during the 2016 school year. Teachers in P4P schools were also told that the 2016 performance award—determined by multiple teacher-input observations as well as beginning-and end-of-year student assessments—was conditional on remaining in post during the 2016 school year, and would be paid early in 2017.

The experiment continued in the same 164 schools for the 2017 school year. Schools were contacted by telephone in February 2017 to remind them of the continuation of the scheme. Teachers in FW schools were told that they would receive the RWF 20,000 award, and teachers in P4P schools were told that the 2017 performance award—calculated in a similar fashion to the 2016 award—would be paid early in 2018. Our enumerators stressed that both payments were conditional on remaining in post during the 2017 school year.

3 Data

The primary analyses make use of several distinct types of data. Conceptually, these trace out the causal chain from the advertisement intervention to a sequence of outcomes: that is, from the candidate’s application decision, to the set (and attributes) of candidates hired into schools, to the learning outcomes that they deliver, and, finally, to the teacher’s decisions to remain in the schools. In this section, we describe the administrative, survey, and assessment data available for each of these steps in the causal chain. A schematic of these data sources, and their timing in relation to intervention, is laid out in Figure 2. Our understanding of these data informs our choices of specification for analysis, as discussed in detail in the pre-analysis plan.

3.1 Applications

Table 1 summarizes the applications for the newly advertised jobs, submitted in January 2016, across the six districts. Of the 2,185 applications in total, 1,963 come from candidates with a Teacher Training College (TTC) degree—we term these qualified since, at least in principle, a TTC degree is required for the placements at stake. In addition to submitting their TTC qualifications, applicants were required to undertake a district-level exam in order to be considered for a post. This final step was added only after applications were submitted, in a change of regulation from the Rwanda Education Board. Each district constructed its own assessment for this purpose, and districts used the same assessment tool across all subjects of application. We refer to applications from individuals who hold both a TTC degree and who sat a district-specific exam as complete.

9 These data were obtained from the six district offices and represent a census of applications for the new posts.
10 A small number of candidates sat for district exams despite not having a TTC degree.
Study sample definition
- 6 Districts
- 18 Labor markets enrolled

Randomization of labor markets to advertised contracts
- Advertized P4P
- Advertized FW
- Advertized mixed

Applications placed at District Education Offices
- 1,963 qualified applications

Teachers placed into schools and assigned to classes

Baseline schools enrolled
- 164 schools enrolled in study

Randomization of schools to experienced contracts

<table>
<thead>
<tr>
<th>Experienced P4P contracts</th>
<th>Experienced FW contracts</th>
</tr>
</thead>
<tbody>
<tr>
<td>85 schools</td>
<td>79 schools</td>
</tr>
<tr>
<td>176 new recruits at baseline (134 upper primary)</td>
<td>153 new recruits at baseline (126 upper primary)</td>
</tr>
<tr>
<td>1,608 incumbent and other teachers at baseline (682 upper primary)</td>
<td>1,459 incumbent and other teachers at baseline (618 upper primary)</td>
</tr>
<tr>
<td>7,229 pupils assessed</td>
<td>6,602 pupils assessed</td>
</tr>
</tbody>
</table>

Year 1 teacher inputs measured
- Presence, preparation, pedagogy

Year 1 endline
- 7,495 pupils assessed

Year 2 teacher inputs measured

Year 2 endline
- 8,910 pupils assessed

Year 1 endline
- 6,815 pupils assessed

Year 2 teacher inputs measured

Year 2 endline
- 7,964 pupils assessed

Figure 2: Study profile
In the table, we present TTC scores, genders, and ages—the other observed CV characteristics—for all qualified applicants, regardless of whether their application includes a district exam score.

Table 1: Application characteristics, by district

<table>
<thead>
<tr>
<th></th>
<th>Gatsibo</th>
<th>Kayonza</th>
<th>Kirehe</th>
<th>Ngoma</th>
<th>Nyagatare</th>
<th>Rwamagana</th>
<th>All</th>
</tr>
</thead>
<tbody>
<tr>
<td>Applicants</td>
<td>390</td>
<td>310</td>
<td>462</td>
<td>381</td>
<td>327</td>
<td>315</td>
<td>2,185</td>
</tr>
<tr>
<td>Qualified</td>
<td>333</td>
<td>258</td>
<td>458</td>
<td>365</td>
<td>272</td>
<td>277</td>
<td>1,963</td>
</tr>
<tr>
<td>Has TTC score</td>
<td>317</td>
<td>233</td>
<td>405</td>
<td>338</td>
<td>260</td>
<td>163</td>
<td>1,716</td>
</tr>
<tr>
<td>Mean TTC score</td>
<td>0.53</td>
<td>0.54</td>
<td>0.50</td>
<td>0.53</td>
<td>0.54</td>
<td>0.55</td>
<td>0.53</td>
</tr>
<tr>
<td>SD TTC score</td>
<td>0.14</td>
<td>0.15</td>
<td>0.19</td>
<td>0.15</td>
<td>0.14</td>
<td>0.12</td>
<td>0.15</td>
</tr>
<tr>
<td>District score</td>
<td>273.00</td>
<td>198.00</td>
<td>312.00</td>
<td>173.00</td>
<td>177.00</td>
<td>78.00</td>
<td>1,211.00</td>
</tr>
<tr>
<td>Qualified female</td>
<td>0.53</td>
<td>0.47</td>
<td>0.45</td>
<td>0.50</td>
<td>0.44</td>
<td>0.45</td>
<td>0.48</td>
</tr>
<tr>
<td>Qualified age</td>
<td>27.32</td>
<td>27.78</td>
<td>27.23</td>
<td>27.23</td>
<td>26.98</td>
<td>27.50</td>
<td>27.33</td>
</tr>
</tbody>
</table>

The 2,185 applications come from 1,424 unique individuals, of whom 1,194 have a TTC qualification. Qualified applicants complete an average of 1.61 applications in study districts, with 62 percent of qualified applicants completing only one application.

3.2 Teacher attributes

Following the application stage, successful applicants to posts in study districts were placed into schools by District Education Officers, and were assigned to particular grades, subjects, and streams by their head teachers. A primary school in a study district was enrolled in the study if two conditions were met: the District Education Officer placed at least one new recruit in this school and the head teacher assigned at least one of these new recruits to an upper-primary teaching role. Note that once a school had been enrolled, any teacher—placed recruit or incumbent—who was assigned to teach one of the five ‘core curricular’ subjects in upper-primary grades 4, 5 or 6 was eligible for the intervention.

We visited the enrolled schools at baseline in February 2016, and collected data using three broad types of instruments: school surveys, teacher surveys, and teacher ‘lab’ measures. We describe these measures below and in Table 2. In doing so, we summarize the attributes of three mutually exclusive types of teachers: recruits, who were hired by the district, incumbents, who were teaching in the school the previous year, and ‘other’ teachers, who include new informal and community hires not affected by the first-tier randomization.

School surveys. These were administered to head teachers, or their deputies, at baseline and included a variety of data on management practices—not documented here—as well as administrative records of teacher attributes, including age, gender, and qualifications. The data cover all teachers in the school, regardless of whether they were eligible for the intervention.

Teacher surveys. These were administered to all teachers responsible for at least one upper-primary, core-curricular subject and included questions about demographics, household background, training, qualifications and experience, and earnings. Of particular note are attributes that might be associated with both the likelihood of selecting into P4P contracts relative to FW contracts and with subsequent performance: the ‘Big-5’ personality traits, self esteem, and the locus of control (Almlund et al., 2011; Callen et al., 2018; Dal Bó et al., 2013; Donato et al., 2017; Gensowski, 2017; John, 1990).
Table 2: Baseline teacher characteristics

<table>
<thead>
<tr>
<th>Characteristics from school survey (all teachers)</th>
<th>Recruit</th>
<th>Incumbent</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Female</td>
<td>0.40</td>
<td>0.48</td>
<td>0.46</td>
</tr>
<tr>
<td></td>
<td>(0.49)</td>
<td>(0.50)</td>
<td>(0.50)</td>
</tr>
<tr>
<td>Age</td>
<td>26.34</td>
<td>35.40</td>
<td>35.17</td>
</tr>
<tr>
<td></td>
<td>(4.41)</td>
<td>(8.98)</td>
<td>(8.65)</td>
</tr>
<tr>
<td>Observations</td>
<td>329</td>
<td>2,854</td>
<td>221</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Characteristics from teacher survey (upper primary teachers only)</th>
<th>Recruit</th>
<th>Incumbent</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Big 5 personality traits</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conscientiousness</td>
<td>6.07</td>
<td>6.01</td>
<td>6.03</td>
</tr>
<tr>
<td></td>
<td>(0.42)</td>
<td>(0.55)</td>
<td>(0.57)</td>
</tr>
<tr>
<td>Extraversion</td>
<td>4.83</td>
<td>4.73</td>
<td>4.30</td>
</tr>
<tr>
<td></td>
<td>(1.92)</td>
<td>(10.31)</td>
<td>(0.97)</td>
</tr>
<tr>
<td>Agreeableness</td>
<td>5.69</td>
<td>5.87</td>
<td>5.85</td>
</tr>
<tr>
<td></td>
<td>(0.76)</td>
<td>(0.70)</td>
<td>(0.67)</td>
</tr>
<tr>
<td>Openness to experience</td>
<td>5.31</td>
<td>5.07</td>
<td>5.36</td>
</tr>
<tr>
<td></td>
<td>(0.82)</td>
<td>(1.03)</td>
<td>(0.78)</td>
</tr>
<tr>
<td>Neuroticism</td>
<td>1.92</td>
<td>1.60</td>
<td>1.35</td>
</tr>
<tr>
<td></td>
<td>(1.22)</td>
<td>(1.08)</td>
<td>(1.00)</td>
</tr>
<tr>
<td>Big Five index</td>
<td>-0.03</td>
<td>0.00</td>
<td>0.10</td>
</tr>
<tr>
<td></td>
<td>(0.46)</td>
<td>(0.58)</td>
<td>(0.41)</td>
</tr>
<tr>
<td>Locus of control (Rotter)</td>
<td>3.06</td>
<td>3.00</td>
<td>2.63</td>
</tr>
<tr>
<td></td>
<td>(0.57)</td>
<td>(0.71)</td>
<td>(0.72)</td>
</tr>
<tr>
<td>Self esteem (Rosenberg)</td>
<td>29.19</td>
<td>30.50</td>
<td>29.67</td>
</tr>
<tr>
<td></td>
<td>(3.23)</td>
<td>(2.12)</td>
<td>(3.83)</td>
</tr>
<tr>
<td>Observations</td>
<td>251</td>
<td>1,067</td>
<td>78</td>
</tr>
</tbody>
</table>

Lab measures (upper primary teachers only)			
Dictator game: share sent	0.27	0.43	0.46
	(0.32)	(0.35)	(0.34)
Share choosing lottery...			
A	0.36	0.29	0.31
	(0.18)	(0.18)	(0.12)
B	0.16	0.16	0.14
	(0.12)	(0.15)	(0.10)
C	0.19	0.22	0.33
	(0.16)	(0.16)	(0.14)
D	0.12	0.15	0.10
	(0.12)	(0.15)	(0.10)
E	0.19	0.22	0.33
	(0.19)	(0.22)	(0.33)
Grading task score (IRT)	-0.16	0.04	-0.01
	(0.89)	(0.90)	(0.95)
Competition game: share choosing to compete	0.65	0.66	0.73
	(0.65)	(0.66)	(0.73)
Observations	250	1,066	78

Note: Means with standard deviations in parentheses. Total observations reported separately for each data source.
‘Lab-in-the-field’ instruments. We used a series of incentivized ‘lab-in-the-field’ tasks to provide additional measures of teacher attributes.

In a framed version of the Dictator Game (Kahneman et al., 1986), each participant was given 2,000 Rwandan Francs (RWF) and asked how much of this money they wished to allocate towards providing a school supply packet to students, and how much they wished to keep for themselves. Each student school supply packet was worth 200 RWF, meaning that, in theory, the teacher/head teacher could allocate all 2,000 RWF to providing 10 (randomly chosen) students with a packet. The purpose of this game was to measure ‘other regarding’ preferences in a way that would be likely to predict teachers’ willingness to allocate their time and effort to student learning. Table 2 shows that recruits playing this game gave on average 27 percent of the stake to the schools’ students—substantially less than the average donated share of 43 percent by incumbent teachers.

Next, teachers participated in a Lottery Choice task designed to measure their degree of risk aversion. Based on existing instruments (Binswanger, 1980; Eckel and Grossman, 2008), this task asks participants to choose between five lotteries, which include one certain outcome (here, labelled as Option A) and a series of alternatives increasing in their returns, but also their riskiness. Table 2 shows that more than a third of recruits chose the certain outcome, but beyond this, choices are fairly evenly spread across the remaining alternatives.

Teachers also undertook a Grading Task which measured their mastery of the curriculum in the primary subject that they teach (c.f. similar tasks used to by Bold et al. (2017) to construct the World Bank’s Service Delivery Indicators). Teachers were asked to grade a student examination script, and had 5 minutes to determine if a series of student answers were correct or incorrect. They received a fixed payment for participation that did not depend on performance.

This grading task also served as the first stage in a Competition Game, based on Niederle and Vesterlund (2007), which has been shown elsewhere to be associated with gender differences in the taste for competitive careers (Buser et al., 2014). Following the fixed-pay grading task that provides our measure of teacher skill, teachers were asked to undertake a second grading exercise. This second grading task took the form of a tournament: only the top 20 percent of teachers within a given subject and district would receive a payout, and the payout would be 5 times the payout for the fixed-pay grading task.11 Finally, in a third round teachers were allowed to choose between the fixed-pay and tournament payment schemes. Table 2 highlights that nearly two thirds of both recruits and incumbents chose the tournament scheme; this decision (residualized to account for differences in actual ability) will provide a measure of the ‘taste for competition’ used in the secondary analysis described in the pre-analysis plan.

3.3 Student learning

Student learning was measured via assessments taken at the start and end of the 2016 school year, and the end of the 2017 school year (indexed by \{0,1,2\}, respectively, in subsequent notation). These student assessments play a dual role in our study: they provide the primary measure of learning for analysis of program impacts, and they were used in the evaluation of teachers in the experienced P4P arm for purposes of performance awards, as discussed in the pre-analysis plan.12

We developed comprehensive subject- and grade-specific, competency-based assessments for

11This payout structure is modified from the original Competition Game of Niederle and Vesterlund (2007), who compare a piece rate with a tournament in which the winner receives a multiple of that same piece rate. We made this change to mirror the contractual choice facing applicants in our study.

12As a robustness check, we will also test for impacts of experienced P4P on scores from national exams taken in grade 6. These scores were not included in the incentive metric and will therefore enable us to check for the possibility of ‘teaching to the test’.
grades 4, 5 and 6.13 These assessments were based on the new Rwanda national curriculum and covered the five core subjects: Kinyarwanda, English, Mathematics, Sciences, and Social Studies. We developed one assessment per grade-subject, with students at the beginning of the year being assessed on the prior year’s material (and a special grade 3 assessment developed for the purpose of assessing grade 4 students at the beginning of the year). Each test aimed to cover the entire curriculum for the corresponding subject and year, with questions becoming progressively more difficult as a student advanced in the test. The questions were a combination of multiple choice and fill-in diagrams.14

In each round, we randomly sampled a subset of students from each grade to take the test. In Year 1 of the study, both baseline and endline student samples were drawn from the official school register of enrolled students (complied by the school at the beginning of the year). This was done to ensure that the sampling protocol did not create incentives for strategic exclusion of students. In Year 2, students were assessed at the end of the year only, and were sampled from a listing that we collected in the second trimester.

Student samples were stratified by teaching streams (subgroups of students taught together for all subjects). In Round 0, we sampled a minimum of 5 pupils per stream, and oversampled streams taught in at least one subject by a new recruit to fill available spaces, up to a maximum of 20 pupils per stream and 40 per grade. In rare cases of grades with more than 8 streams, we sampled 5 pupils from all streams. In Round 1, we sampled 10 pupils from each stream: 5 pupils retained from the baseline (if the stream was sampled at baseline) and 5 randomly sampled new pupils. We included the new students to alleviate concerns that teachers in P4P schools might teach (only) to previously sampled students. In Round 2, we randomly sampled 10 pupils from each stream using the listing for that year.15 Resulting sample sizes are presented in Table 3.

Table 3: Pupil and assessment descriptive statistics

<table>
<thead>
<tr>
<th></th>
<th>Round</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Baseline</td>
<td>Round 1</td>
<td>Round 2</td>
<td></td>
</tr>
<tr>
<td>Schools</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Streams</td>
<td>1,629</td>
<td>1,772</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total upper-primary pupils</td>
<td>67,371</td>
<td>72,412</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pupils sampled for test</td>
<td>14,672</td>
<td>16,067</td>
<td>17,722</td>
<td></td>
</tr>
<tr>
<td>Pupils taking exam</td>
<td>13,831</td>
<td>14,310</td>
<td>16,874</td>
<td></td>
</tr>
<tr>
<td>Student-subjects assessed</td>
<td>69,141</td>
<td>71,550</td>
<td>84,370</td>
<td></td>
</tr>
<tr>
<td>$E[z]$</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>$\text{Var}[z]$</td>
<td>0.83</td>
<td>0.78</td>
<td>0.78</td>
<td></td>
</tr>
</tbody>
</table>

Note: Enrollment figures taken from official pupil registration data, updated annually, and hence not collected in Round 1 at the end of Year 1.

The tests were orally administered by trained enumerators. Students listened to an enumerator

13The tests were developed in cooperation with local and international experts, and in consultation with the Ministry of Education. They were extensively piloted and revised during and after piloting.

14In piloting, all student tests were administered in English but we found that grade 4 students had not yet received the level of English instruction necessary to be adequately measured using an English-based exam. Grade 4 tests were therefore translated and administered in Kinyarwanda throughout the study.

15Consequently, the number of pupils assessed in Year 2 who have also been assessed in Year 1 (either at baseline or endline) is limited. Because streams are reshuffled across years and because we were not able to match Year 2 pupil registers to Year 1 registers in advance of the assessment, it was not possible to sample pupils to maintain a panel across years while continuing to stratify by stream.
as he/she read through the instructions and test questions, prompting students to answer. The exam was timed for 50 minutes, allowing for 10 minutes per section. Enumerators administered the exam using a timed proctoring video on electronic tablets.16 Individual student test results were kept confidential from teachers, parents, head teachers, and Ministry of Education officials, and have only been used for performance award and evaluation purposes in this study.

Responses were used to estimate a measure of student learning (for a given student in a given round and given subject in a given grade) based on a two-parameter Item Response Theory (IRT) model, which was estimated using Stata’s \texttt{irt 2pl} command. We use empirical Bayes estimates of student ability from this model as our measure of a student’s learning level in a particular grade.

3.4 Teacher inputs

We collected data on teachers’ inputs into the classroom. This was undertaken in P4P schools only during Year 1, and in both P4P and FW schools in Year 2. These measures contribute to the incentivized teacher performance metric in P4P schools, as described in the pre-analysis plan. This composite metric is based on three input measures (teacher presence, lesson preparation and pedagogical practice), and one output measure (student performance)—the ‘4Ps’. Here we describe the input components measured.

To assess the three inputs, P4P schools received three unannounced surprise visits: two spot checks during Summer 2016, and one spot check in Summer 2017. During these visits, Sector Education Officers (SEOs) from the District Education Offices (in Year 1) or IPA staff (for logistical reasons, in Year 2) observed teachers and monitored their presence, preparation and pedagogy with the aid of specially designed tools.17 FW schools also received an unannounced visit in Year 2, at the same time as the P4P schools. Table 4 shows summary statistics for each of these three input measures over the three rounds of the study, are presented in Table 5.

\textit{Presence} is defined as the fraction of spot-check days that the teacher is present at the start of the school day. The SEOs recorded teacher presence after speaking with the head teacher at the start of the school day during each unannounced visit. In order for the SEO to record a teacher present, the head teacher had to physically show the SEO that the teacher was in school rather than relying on an attendance roster.

Lesson \textit{preparation} is defined as the planning involved with daily lessons, and is measured through a review of teacher written weekly lesson plans. Prior to any spot checks, teachers in grades 4, 5, and 6 in P4P schools were shown how to fill out a lesson plan in accordance with REB guidance.18 Specifically, SEOs visited schools and provided teachers with a template to help prepare three key components of a lesson—write out the lesson objective, list the instructional activities, and list the types of assessment that will be carried out. A ‘hands-on’ session then enabled teachers to practice writing lesson plans using this template before incorporating it in their daily teaching practice. During the SEO’s unannounced visit, he/she collected the daily lesson plans (if any had been prepared) from each teacher. Field staff subsequently used a lesson planning scoring rubric to

16The proctoring videos were an additional safeguard to ensure consistency in test administration and timing.

17Training of SEOs took place over two days. Day 1 consisted of an overview of the study and its objectives and focused on how to explain the intervention (in particular the 4Ps) to teachers in P4P schools. During Day 2, SEOs learned how to use the teacher monitoring tools and how to conduct unannounced school visits. SEOs practiced using these monitoring tools by viewing videos recorded during pilot visits. Training sessions were led by staff experienced in teacher evaluation to ensure that SEOs applied the rubrics consistently. SEOs were briefed on the importance of not informing teachers or head teachers ahead of the visits. Field staff monitored the SEOs adherence to protocol, including through random phone calls to head teachers.

18To isolate the effects of performance pay, aspects of training were kept to a minimum and focused on how teachers could meet the targeted metrics.
Table 4: Measures of teacher inputs in P4P schools

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>St Dev</th>
<th>Obs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year 1, Round 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Teacher present</td>
<td>0.97</td>
<td>(0.18)</td>
<td>661</td>
</tr>
<tr>
<td>Has lesson plan</td>
<td>0.54</td>
<td>(0.50)</td>
<td>598</td>
</tr>
<tr>
<td>Classroom observation: Overall score</td>
<td>2.01</td>
<td>(0.40)</td>
<td>645</td>
</tr>
<tr>
<td>Lesson objective</td>
<td>2.00</td>
<td>(0.70)</td>
<td>645</td>
</tr>
<tr>
<td>Teaching activities</td>
<td>1.94</td>
<td>(0.47)</td>
<td>645</td>
</tr>
<tr>
<td>Use of assessment</td>
<td>1.98</td>
<td>(0.50)</td>
<td>643</td>
</tr>
<tr>
<td>Student engagement</td>
<td>2.12</td>
<td>(0.56)</td>
<td>645</td>
</tr>
<tr>
<td>Year 1, Round 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Teacher present</td>
<td>0.96</td>
<td>(0.21)</td>
<td>648</td>
</tr>
<tr>
<td>Has lesson plan</td>
<td>0.54</td>
<td>(0.50)</td>
<td>598</td>
</tr>
<tr>
<td>Classroom observation: Overall score</td>
<td>2.27</td>
<td>(0.41)</td>
<td>639</td>
</tr>
<tr>
<td>Lesson objective</td>
<td>2.21</td>
<td>(0.77)</td>
<td>638</td>
</tr>
<tr>
<td>Teaching activities</td>
<td>2.17</td>
<td>(0.46)</td>
<td>638</td>
</tr>
<tr>
<td>Use of assessment</td>
<td>2.23</td>
<td>(0.48)</td>
<td>638</td>
</tr>
<tr>
<td>Student engagement</td>
<td>2.46</td>
<td>(0.49)</td>
<td>639</td>
</tr>
<tr>
<td>Year 2, Round 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Teacher present</td>
<td>0.90</td>
<td>(0.31)</td>
<td>739</td>
</tr>
<tr>
<td>Has lesson plan</td>
<td>0.79</td>
<td>(0.41)</td>
<td>610</td>
</tr>
<tr>
<td>Classroom observation: Overall score</td>
<td>2.36</td>
<td>(0.35)</td>
<td>636</td>
</tr>
<tr>
<td>Lesson objective</td>
<td>2.47</td>
<td>(0.66)</td>
<td>636</td>
</tr>
<tr>
<td>Teaching activities</td>
<td>2.26</td>
<td>(0.44)</td>
<td>634</td>
</tr>
<tr>
<td>Use of assessment</td>
<td>2.25</td>
<td>(0.47)</td>
<td>635</td>
</tr>
<tr>
<td>Student engagement</td>
<td>2.48</td>
<td>(0.46)</td>
<td>636</td>
</tr>
</tbody>
</table>

Notes: Descriptive statistics presented are for upper-primary teachers only. Overall score for classroom observation is average of four components: Lesson objective, Teaching activities, Use of assessment, and Student engagement, with each component scored on a scale from zero to three.
provide a subjective measure of quality. Because a substantial share of upper-primary teachers do not have a lesson plan on a randomly chosen audit day, we use the presence of such a lesson plan as a summary measure in both the incentivized contracts and as an outcome for analysis.

Pedagogy is defined as the practices and methods that teachers use in order to impact student learning. We collaborated with both the Ministry of Education and REB in May and June 2015 to develop a monitoring instrument to measure teacher pedagogy through classroom observation. Our classroom observation instrument measured objective teacher actions and skills as an input into scoring teachers’ pedagogical performance, using a rubric adapted from the Danielson Framework for Teaching, which is widely used in the U.S. (Danielson, 2007). The observer evaluated the teachers’ effective use of 21 different activities over the course of a full 45-minute lesson. Based on these observations and a detailed rubric, the observer provided a subjective score, on a scale representing mastery from zero to three, of four components of the lesson: communication of lesson objectives, delivery of material, use of assessment, and student engagement. The teacher’s incentivized score, as well as our measure of pedagogy, is defined as the average of these ratings across the four domains.

3.5 Job fairs

Although not part of our core analysis, we will also report results using data collected at our TTC job fairs. At each of the three events that were held in December 2015—during the application period affected by the intervention—we invited attendees to participate in the same survey and ‘lab-in-the-field’ tasks that were (subsequently) administered to teachers at baseline. We were then able to link responses to application and placement decisions, and (for the subset of attendees who became placed recruits) to the full set of study outcomes. These job fair data are useful because they provide an insight into the pool of potential applicants to FW and P4P positions. But, of course, this insight is only partial since participants ‘selected in’ to attend these informational events and are not necessarily representative of the wider pool.

4 Results

We set out to address six questions, which each correspond to a primary hypothesis that we test, and a small number of associated secondary hypotheses that represent alternative measures or mechanisms. These hypotheses were specified in the pre-analysis plan, using the theoretical framework set out in Appendix A; they are the following:

I. Advertised P4P induces differential application qualities;

II. Advertised P4P affects the observable skills of recruits placed in schools;

III. Advertised P4P induces differentially ‘intrinsically’ motivated recruits to be placed in schools;

IV. Advertised P4P induces the selection of higher- (or lower-)performing teachers, as measured by the learning outcomes of their students;

V. Experienced P4P creates incentives which contribute to higher (or lower) teacher performance, as measured by the learning outcomes of their students;

19Though not structured as a strict time-on-task measure, this aspect is similar to the Stallings Observation System (Stallings et al., 2014).

20Similar rubric-based scoring has been used in other field experiments, including Glewwe et al. (2010) who measure teacher effort with a similar intensity scale in a teacher incentive study in Kenya.
VI. Selection and incentive effects are apparent in the composite 4P performance metric.

For each of these hypotheses, four questions determine how they are tested: (a) What outcome measure will be used? (b) On what sample will this be estimated? (c) What test statistic will be used? And (d) How will inference be undertaken on this test statistic? We summarize these design decisions in Table 6, copied from the pre-analysis plan, and provide details of each below.
Table 6: Summary of hypotheses, outcomes, samples, and specifications

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Sample</th>
<th>Test statistic</th>
<th>Randomization inference</th>
</tr>
</thead>
</table>
| **Hypothesis I: Advertised P4P induces differential application qualities**
| TTC exam scores | Universe of applications | KS test of eq. (1) | τ^A |
| District exam scores | Universe of applications | KS test of eq. (1) | τ^A |
| TTC exam scores | Universe of applications | t_A in eq. (2) | τ^A |
| TTC exam scores | Applicants in the top \hat{H} number of applicants, where \hat{H} is the predicted number of hires based on subject and district, estimated off of FW applicant pools | t_A in eq. (2) | τ^A |
| TTC exam scores | Universe of application, weighted by probability of placement | t_A in eq. (2) | τ^A |
| Number of applicants | Universe of applications | t_A in eq. (3) | τ^A |

Hypothesis II: Advertised P4P affects the observable skills of placed recruits in schools

| *Teacher skills assessment* | Placed recruits | t_A in eq. (9) | τ^A |
| IRT model EB score | |

Hypothesis III: Advertised P4P induces differentially 'intrinsically' motivated recruits to be placed in schools

| *Dictator-game donations* | Placed recruits | t_A in eq. (5) | τ^A |
| Perry PSM instrument | Placed recruits retained through Year 2 | t_A in eq. (5) | τ^A |

Hypothesis IV: Advertised P4P induces the selection of higher-(or lower-) value-added teachers

| *Student assessments (IRT EB predictions)* | Pooled Year 1 & Year 2 students | t_A in eq. (6) | τ^A |

Student assessments	Pooled Year 1 & Year 2 students	t_A and t_{A+AE}; t_{AE} in eq. (7)	$\tau^A \times \tau^E$
Student assessments	Year 1 students	t_A in eq. (6)	τ^A
Student assessments	Year 2 students	t_A in eq. (6)	τ^A

Hypothesis V: Experienced P4P creates incentives which contribute to higher (or lower) teacher value-added

| *Student assessments (IRT EB predictions)* | Pooled Year 1 & Year 2 students | t_E in eq. (6) | τ^E |

Student assessments	Pooled Year 1 & Year 2 students	t_E and t_{E+AE}; t_{AE} in eq. (7)	$\tau^E \times \tau^E$
Student assessments	Year 1 students	t_E in eq. (6)	τ^E
Student assessments	Year 2 students	t_E in eq. (6)	τ^E

Continues...
Table 6, continued

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Sample</th>
<th>Test statistic</th>
<th>Randomization inference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hypothesis VI: Selection and incentive effects are apparent in the 4P performance metric</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>*Composite 4P metric</td>
<td>Teachers, pooled Year 1 (experienced P4P only) & Year 2</td>
<td>(t_A) in eq. (??)</td>
<td>(T^A)</td>
</tr>
<tr>
<td>Composite 4P metric</td>
<td>Teachers, pooled Year 1 (experienced P4P only) & Year 2</td>
<td>(t_A) and (t_{A+AE}); (t_E) and (t_{E+AE}); (t_{AE}) in interacted eq.</td>
<td>(T^A \times T^E)</td>
</tr>
<tr>
<td>Barlevy-Neal rank</td>
<td>As above</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Teacher attendance</td>
<td>As above</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Classroom observation</td>
<td>As above</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lesson plan (indicator)</td>
<td>As above</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Primary tests of each family of hypotheses appear first, preceded by a superscript *; those that appear subsequently under each family without the superscript * are secondary hypotheses. Under inference, \(T^A \) refers to randomization inference involving the permutation of the advertised contractual status of the recruit only; \(T^E \) refers to randomization inference that includes the permutation of the experienced contractual status of the school; \(T^A \times T^E \) indicates that randomization inference will permute both treatment vectors to determine a distribution for the relevant test statistic. Test statistic is a studentized coefficient or studentized sum of coefficients (a \(t \) statistic), except where otherwise noted (as in Hypothesis I); in linear mixed effects estimates of equation (6) and (7), which are estimated by maximum likelihood, this is a \(z \) rather than \(t \) statistic, but we maintain notation to avoid confusion with the test score outcome, \(z_{jk,br} \).
4.1 Hypothesis I. Advertised P4P induces differential application qualities.

Primary test The primary test of this hypothesis is a non-parametric Kolmogorov-Smirnov (KS) test for a difference in distributions of applicant teacher training college final exam score across the advertised P4P and advertised FW labor markets. We can write the KS test-statistic as

$$T_{KS} = \sup_y \left| \hat{F}_{P4P}(y) - \hat{F}_{FW}(y) \right| = \max_{i=1,\ldots,N} \left| \hat{F}_{P4P}(y_i) - \hat{F}_{FW}(y_i) \right|. \quad (1)$$

Here, $\hat{F}_{P4P}(y)$ denotes the empirical cumulative distribution function of TTC score among applicants who applied under advertised P4P, evaluated at some specific TTC score y. Likewise, $\hat{F}_{FW}(y)$ denotes the empirical cumulative distribution function of TTC score among applicants who applied under advertised FW, evaluated at the same TTC score y.

We test the statistical significance of this difference in distributions by randomization inference. To do so, we repeatedly sample from the set of potential (advertised) treatment assignments T^A and, for each such permutation, calculate the KS test-statistic. The relevant p-value is then given by the share of such test statistics larger in absolute value than the test statistic estimated from the actual assignment.

Consistent with the visual evidence in Figure 3, distributions of applicant TTC scores are statistically indistinguishable between the P4P and FW advertisement arms. The KS test-statistic has a value of 0.0264, with a p-value of 0.96. Randomization inference is well-powered, meaning that we can rule out even small effects on the TTC score distribution: a 95 percent confidence interval based on inversion of the RI test rules out additive treatment effects outside of the range $[-0.02, 0.02]$. We therefore conclude that there was no meaningful impact of advertised P4P on the TTC final exam score among applicants.

Secondary tests For secondary tests of this hypothesis, we estimate a series of weighted regressions of the form

$$y_{iqd} = \tau_A T^A_{qd} + \gamma_q + \delta_d + e_{iqd}, \quad \text{with weights } w_{iqd} \quad (2)$$
where y_{iqd} denotes the TTC exam score of applicant teacher i with qualification q in district d. Treatment T^{A}_{qd} denotes the contractual condition under which a candidate applied.\footnote{Here and throughout the empirical specifications, we will define T^{A}_{qd} as a vector that includes indicators for both the P4P and mixed-treatment advertisement condition. However, for hypothesis testing, we are interested only in the coefficient on the pure P4P treatment. Defining treatment in this way ensures that only candidates who applied (and in subsequent sections, were placed) under the pure FW treatment are considered as the omitted category here, to which P4P recruits will be compared.}

We focus on the impacts of advertised P4P under three specific selection rules:

- Impacts on the average quality, as measured by TTC score, of all applicants. This corresponds to $w_{iqd} = 1$ for all teachers.

- Impacts on the average ability of the top \hat{H} applicants, where \hat{H} is the predicted number hired in that district and subject based on outcomes in advertised FW district-subjects. This corresponds to weights $w_{iqd} = 1$ for the top \hat{H} teachers in their application pool, and zero otherwise. The fraction hired is predicted from a regression of the number of actual hires on district and subject indicators, using FW applicant pools only.

- Impacts on applicants, weighted by their probability of hiring, using the FW district hiring probability. This corresponds to weights $w_{iqd} = \hat{p}_{iqd}$, where \hat{p}_{iqd} is the estimated probability of being hired as a function of district and subject indicators, as well as a fifth-order polynomial in TTC exam scores, estimated using FW applicant pools only.

The first of these can be thought of as representing the consequences of advertised P4P for placed teacher quality under a random hiring rule; the second represents the outcome of advertised P4P under meritocratic selection on the basis of TTC exam scores alone; and the third represents the consequences of advertised P4P under the status quo mapping from TTC scores to hiring probabilities.

The weighted regression parameter τ^A estimates the difference in (weighted) mean applicant skill induced by advertised P4P. To undertake inference about this difference in means, we use randomization inference, sampling repeatedly from the set of potential (advertised) treatment assignments T^{A}. Following Chung and Romano (2013), we studentize this parameter by dividing it by its (cluster-robust, clustered at the district-subject level) standard error to control the asymptotic rejection probability against the null hypothesis of equality of means. These are two-sided tests.\footnote{We calculated p-values for two-sided tests as provided in Rosenbaum (2010) and in the ‘Standard Operating Procedures’ of Donald Green’s Lab at Columbia (Lin et al., 2016).}

The absolute value of the resulting test statistic, $|t_A|$, is compared to its randomization distribution in order to provide a test of the hypothesis that $\tau^A = 0$.

In the simplest case, where all observations are weighted equally, our estimate of τ^A is -0.00. The studentized coefficient has a standard deviation of 0.011 under the sharp null. The randomization inference p-value is 0.95, indicating that we cannot reject the sharp null of no impact of advertised P4P.

We complete our secondary analysis of Hypothesis I by testing for differences in the number of applicants by treatment status, conditional on district and subject-family fixed indicators. We do so with a specification of the form

$$N_{qd} = \tau^A T^{A}_{qd} + \gamma_q + \delta_d + e_{qd},$$

(3)

where q indexes subject families and d indexes districts; N_{qd} measures the number of qualified
applicants in each district.23 As above, we obtain the studentized test statistic t_A by dividing the estimated coefficient τ_A by the analytical estimate of its cluster-robust standard error, and use this t-statistic in our randomization inference.

In this application volume regression, our estimate of τ_A is -1.14. This has a RI p-value of 0.95, and a confidence interval of $[-36.5, 44.1]$. Thus, we fail to reject the null of no impact of advertised P4P on application volumes, though this is not as precisely estimated as the primary outcome.

4.2 Hypothesis II. Advertised P4P affects the observable skills of placed recruits in schools.

Our primary (and only) test of this hypothesis uses our baseline estimate of skill among placed recruits. Specifically, we use empirical Bayes predictions from an IRT model of teacher skill in each subject,24 which we denote by z_{iqd} for teacher i with qualification q in district d. Figure 4 plots the distribution of this measure by advertised treatment arm.

![Figure 4: Distribution of placed teacher ability, by advertised treatment arm](image)

The test the sharp null of no effects we estimate a regression of the form

$$z_{iqd} = \tau_A T_{qd} + \gamma_q + \delta_d + e_{iqd}.$$ \quad (4)

Our estimate of τ_A is -0.2069. The studentized coefficient has a standard deviation of 0.2083 under the sharp null. The randomization inference p-value is 0.31. It follows that we cannot reject the sharp null of no advertised P4P treatment effect on the observable skills of placed recruits, as measured by a skills test at baseline.

23Qualified here means that the applicant has a TTC degree. In addition to being a useful filter for policy-relevant applications, since only qualified applicants can be hired, in some districts’ administrative data this is also necessary in order to determine the subject-family under which an individual has applied.

24Since this model assumes normality of the skill distribution, we fit item parameters using only the sample of incumbent teachers.
4.3 Hypothesis III. Advertised P4P induces differentially ‘intrinsically’ motivated recruits to be placed in schools.

Primary test In addition to the possibility that advertised P4P may select teachers on the basis of skill, such contracts may also change the distribution of intrinsic motivation among the pool of applicants. Our primary test uses teachers’ allocation to others in the framed Dictator Game played at baseline, which we denote by \(x_{iqd} \) for teacher \(i \) with qualification \(q \) in district \(d \). Figure 5 plots the distribution of this measure by advertised treatment arm.

Figure 5: Distribution of placed teacher Dictator Game contributions, by treatment arm

To test the sharp null of no effects we estimate a regression of the form

\[
x_{iqd} = \tau_A T_{qd}^A + \gamma q + \delta_d + e_{iqd}.
\]

Our estimate of \(\tau_A \) is \(-0.1079\): teachers recruited under advertised P4P allocated approximately 10 percentage points of the stake less to the school on average in the framed dictator game. The studentized coefficient has a standard deviation of 0.0603 under the sharp null. The randomization inference p-value is 0.02. We can therefore reject this sharp null of no advertised P4P treatment effect on the intrinsic motivation of placed recruits at the 5 percent level.

Secondary test For a secondary test of this hypothesis, we re-estimate the model in (5) using the Perry Public Service motivation score for the sample of placed recruits retained in Year 2. TO BE COMPLETED.

4.4 Hypothesis IV. Advertised P4P induces the selection of higher (or lower) value-added teachers.

Measures of teacher skill and intrinsic motivation are policy relevant insofar as recruits with such favorable attributes are likely to deliver better learning outcomes for their students. To test whether this is the case, we combine experimental variation in the advertised contracts to which placed recruits applied, with the second-stage randomization in experienced contracts under which they worked. This allows us to estimate the impact of advertised P4P, holding constant the experienced contract: a pure compositional effect.

Primary test The measure of student learning which we deploy here, and in Section 4.5 below, is the empirical Bayes prediction of student ability, based on an IRT model of student assessments.
This prediction is observed at the student-subject level, since each sampled student takes an assessment in all five core subjects. We denote this measure by z_{jbksr}, for student j in subject b, stream k, school s, and round r from which student j's outcome is drawn. (Since streams are nested within grades, we suppress an index for grades to reduce notation.) We standardize this measure of student learning within each grade, subject, and round so that it has a mean of zero and a standard deviation of one among students taught by incumbents in schools that experience the fixed-wage treatment.

The advertised treatment about which a given student's performance is informative depends on the identity of the teacher teaching that particular subject via qualification type and district. We denote this by T_{qd}^A for teacher i with qualification type q in district d, and suppress the dependence of the teacher’s qualification q on the subject b, stream k, school s, and round r, which implies that $q = q(bksr)$. The experienced treatment is assigned at the school level, and is denoted by T_s^E.

Our primary test is for the impact of the advertised treatment on a recruit's annual value added, holding constant the actual (experienced) contractual treatment of the school into which they were placed. We pool data across the two years of intervention and estimate a specification of the type

$$z_{jbksr} = \tau_A T_{qd}^A + \tau_E T_s^E + \lambda_I I_i + \lambda_s T_s I_i + \rho_{br} z_{ks,r-1} + \delta_d + \psi_r + e_{jbksr},$$

for the learning outcome of student j in subject b, stream k, school s, and round r. We define $i = i(bksr)$ as an identifier for the teacher assigned to that subject-stream-school-round. The variable I_i is an indicator for whether the teacher is an incumbent, and the index $q = q(i)$ denotes the qualification type of teacher i if that teacher is a recruit (and is undefined if the teacher is an incumbent, so that T_q^A is always zero for incumbents). The variable $z_{ks,r-1}$ denotes the vector of average outcomes in the once-lagged assessment among students now placed in that stream, and its coefficient, ρ_{br}, is subject- and round-specific. As determined in our pre-analysis plan, we estimate this model by a linear mixed effects model, allowing for normally distributed random effects at the student-round level. This specification seeks to maximize power for the ability to reject the null of no advertised treatment effects by pooling recruits placed in experienced P4P and experienced FW treatments. Note that the specification in (6) is relevant to both Hypothesis IV via τ_A and Hypothesis V via τ_E. We discuss only τ_A here, postponing discussion of τ_E until the next section.

Our estimate of τ_A is close to zero at 0.01 standard deviations of pupil learning. The studentized coefficient has a standard deviation of 0.0263 under the sharp null. Comparing this studentized estimate with its randomization inference distribution yields a p-value of 0.56, indicating that we cannot reject the null of no impact of advertised P4P on teacher value added. However, since randomization inference is well-powered, we do feel confident in ruling out negative selection effects.

Secondary tests We begin our secondary tests by allowing for heterogeneous treatment impacts by round. Figure 6 illustrates the evolution of the advertised, experienced and combined effect of P4P contracts over time. As we discuss below, the combined effect increases from Year 1 to 2, primarily due to dynamics in the experienced P4P treatment effect. But by Year 2 recruits brought in under advertised P4P also begin to outperform those brought in under advertised FW contracts. As Table 7 reports, the estimate of τ_A for Year 1 is -0.03σ with a randomization inference p-value of 0.21. In Year 2, this estimate is 0.05σ with a randomization inference p-value of 0.12.

The theoretical framework set out in the pre-analysis plan makes clear that the impact of advertised treatment on teacher value-added should depend on the contractual environment into which recruits are placed. Consequently, we also estimate a secondary specification that allows advertised treatment effects on teacher value-added to differ by experienced treatment, including
Figure 6: Impacts on pupil learning, by round

Table 7: Impacts on pupil learning (teacher value-added)

<table>
<thead>
<tr>
<th></th>
<th>Pooled</th>
<th>Round 1</th>
<th>Round 2</th>
<th>Interacted</th>
</tr>
</thead>
<tbody>
<tr>
<td>τ_A</td>
<td>0.01</td>
<td>-0.03</td>
<td>0.05</td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td>[0.56]</td>
<td>[0.21]</td>
<td>[0.12]</td>
<td>[0.60]</td>
</tr>
<tr>
<td>τ_E</td>
<td>0.09</td>
<td>0.03</td>
<td>0.16</td>
<td>0.11</td>
</tr>
<tr>
<td></td>
<td>[0.01]</td>
<td>[0.36]</td>
<td>[0.00]</td>
<td>[0.00]</td>
</tr>
<tr>
<td>τ_{AE}</td>
<td>-0.01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>[0.81]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>λ_E</td>
<td>-0.06</td>
<td>-0.02</td>
<td>-0.10</td>
<td>-0.07</td>
</tr>
<tr>
<td></td>
<td>[0.04]</td>
<td>[0.56]</td>
<td>[0.01]</td>
<td>[0.03]</td>
</tr>
<tr>
<td>$\tau_A + \tau_{AE}$</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>[0.87]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\tau_E + \tau_{AE}$</td>
<td>0.09</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>[0.05]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\tau_E + \lambda_E$</td>
<td>0.04</td>
<td>0.01</td>
<td>0.06</td>
<td>0.04</td>
</tr>
<tr>
<td></td>
<td>[0.14]</td>
<td>[0.71]</td>
<td>[0.07]</td>
<td>[0.14]</td>
</tr>
</tbody>
</table>

Notes: For each estimated parameter, or combination of parameters, the table reports the point estimate, stated in standard deviations of pupil learning, together with its randomization inference p-value. Randomization inference is conducted on the associated z statistic, with 2,000 permutations of the relevant treatment assignment.
an interaction term between the two treatments. This interacted model takes the form

\[z_{jkbsr} = \tau_A T_d I + \tau_E T_s I + \lambda I + \rho_{bg} z_{ks, r-1} + \delta_d + \psi_r + e_{jkbsr}. \] (7)

Here, the compositional effect of advertised P4P among recruits placed in FW schools is given by \(\tau_A \) (a comparison of on-the-job performance across groups \(a \) and \(b \), as defined in Figure 1). Likewise, the compositional effect of advertised P4P among recruits placed in P4P schools is given by \(\tau_A + \tau_{AE} \) (a comparison of groups \(c \) and \(d \)). In this interacted model, the impact of advertised P4P is actually smaller—negative in point-estimate terms—when these recruits are placed in P4P schools, relative to when they experience a FW contract. However, undertaking a randomization inference procedure that permutes both treatment assignments \(T_A \) and \(T_E \), we cannot reject the sharp null that these responses are the same, i.e. \(\tau_{AE} = 0 \).

4.5 Hypothesis V. Experienced P4P creates incentives which contribute to higher (or lower) teacher value-added.

Primary test Here, we test for an impact of experienced P4P on recruits’ annual value-added, holding constant the advertised treatment under which they applied. We pool data across the two years and use the specification in (6). Our estimate of \(\tau_E \) is 0.09σ. The studentized coefficient has a standard deviation of 0.06 under the sharp null. Comparing this studentized estimate with its randomization inference distribution (here permuting only \(T_E \)) yields a \(p \)-value of 0.01, implying that we can reject the sharp null of no experienced P4P treatment effect on placed recruits at the 1 percent level.

Secondary tests Figure 6 shows that there is only a small impact of experienced P4P in Year 1 but a much more sizeable impact by Year 2. As reported in Table 7, the estimate of \(\tau_E \) for Year 1 is 0.03σ with a randomization inference \(p \)-value of 0.36. In Year 2, this coefficient is over five times larger at 0.16σ with a randomization inference \(p \)-value of 0.00. This second year impact corresponds to moving a student from the median (50th percentile) up to the 56th percentile of the student learning distribution—a modest but certainly economically meaningful result.

Table 7 also reports coefficients from the interacted specification in (7). In this model, \(\tau_E \) gives the incentive effect of experienced P4P among recruits who applied under FW contractual conditions (a comparison of groups \(a \) and \(c \), as defined in Figure 1), while \(\tau_E + \tau_{AE} \) gives the incentive effect of experienced P4P among recruits who applied under P4P contractual conditions (a comparison of groups \(b \) and \(d \)). The point estimate of \(\tau_E \) is slightly larger than that of \(\tau_E + \tau_{AE} \) but we cannot reject the sharp null that these responses are the same.\(^{25}\)

4.6 Hypothesis VI. Selection and incentive effects are apparent in the 4P performance metric.

Secondary tests Our secondary tests repeat the analysis for each sub-component of the teacher composite performance metric. Table 8 starts by reporting results for the output component: a teacher’s Barlevy-Neal percentile rank (hereafter BN rank). Column 1 reports an estimate of \(\tau_A \) in the pooled BN rank specification of \(-0.04\) (percentile ranks). Comparing this studentized estimate with its randomization inference distribution (here permuting only \(T_A \)) yields a \(p \)-value of 0.60, implying that we cannot reject the null of no impact of advertised P4P on teachers’ BN rank. Our

\(^{25}\)Note \(\tau_E \) should be smaller than \(\tau_E + \tau_{AE} \) if the re-randomization discouraged effort in group \(d \)—i.e. among recruits who expected to experience P4P but did not.
estimate of τ_E in the pooled BN rank specification is 0.06. Comparing this studentized estimate with its randomization inference distribution (here permuting only T^{E}) yields a p-value of 0.04, implying that we can reject the null of no impact of experienced P4P on teachers’ BN rank at the 5 percent level.

Column 2 of Table 8 reports estimates of τ_A and τ_E using only data from the second year of the intervention. Consistent with our teacher value-added results in Section 4.4, both coefficients are higher when estimated for Year 2 only. Our estimate of the impact of advertised P4P is now positive (albeit still insignificant), while our estimate of the impact of experienced P4P rises to 0.10 and remains significant, although now at the 10 percent level.

Table 8 also reports results for the three input dimensions, namely teacher presence, preparation, and pedagogy. In doing so, we use the same specification as (??) with the outcome m_{iqsdrt} defined as follows. In Column 3 (pooled) and Column 4 (Year 2 only) of Table 8, this outcome is the fraction of spot-check days in post-treatment round r on which teacher i, with qualification q, in school s of district d is observed to be present at the start of the school day. In Columns 5 and 6, the outcome is the pedagogy score of teacher i, with qualification q, in school s of district d as observed during the classroom observation in post-treatment round r.

On both input dimensions, the results broadly mirror our previous findings. Our estimates of τ_A increase moving from the pooled to Year 2 specification but are never statistically or economically significantly different from zero (in Table 9, compare Column 3 and 4, and then Column 5 and 6). Since randomization inference remains well-powered, we interpret this as evidence that advertised P4P did not have a negative effect on teachers’ inputs into pupil learning. Our estimates of τ_E also increase moving from the pooled to Year 2 specification and are always positive and statistically significant at conventional levels. In Year 2, teacher presence was 6 percentage points higher among recruits who experienced the P4P contract compared to recruits who experienced the FW contract. (A sizeable impact given that baseline teacher presence was already 90 percent.) Moreover, in the same year, recruits who experienced P4P were more effective in their classroom practices than recruits who received a fixed-wage by 0.26 points, as measured on the four-point scale. We interpret this as evidence of the mechanism behind the results in Section 4.5: P4P raised pupil learning by improving teacher presence and classroom conduct, both of which were directly incentivised as part of the composite 4P performance metric.
Table 8: Estimated effects on dimensions of the composite 4P performance metric

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>τ_A</td>
<td>-0.04</td>
<td>0.08</td>
<td>-0.01</td>
<td>0.01</td>
<td>-0.00</td>
<td>0.11</td>
</tr>
<tr>
<td></td>
<td>[0.60]</td>
<td>[0.43]</td>
<td>[0.42]</td>
<td>[0.48]</td>
<td>[0.35]</td>
<td>[0.42]</td>
</tr>
<tr>
<td>τ_E</td>
<td>0.06</td>
<td>0.10</td>
<td>0.04</td>
<td>0.06</td>
<td>0.25</td>
<td>0.26</td>
</tr>
<tr>
<td></td>
<td>[0.04]</td>
<td>[0.07]</td>
<td>[0.06]</td>
<td>[0.08]</td>
<td>[0.04]</td>
<td>[0.07]</td>
</tr>
<tr>
<td>λ_E</td>
<td>0.00</td>
<td>0.04</td>
<td>-0.02</td>
<td>-0.05</td>
<td>0.04</td>
<td>0.07</td>
</tr>
<tr>
<td></td>
<td>[0.99]</td>
<td>[1.00]</td>
<td>[0.99]</td>
<td>[0.98]</td>
<td>[0.98]</td>
<td>[0.98]</td>
</tr>
</tbody>
</table>

Notes: For each estimated parameter the table reports the point estimate; randomization inference p-values are in brackets.
5 Exploratory results on dynamics

Our two-tier experiment was designed to evaluate the impact of pay-for-performance and, in particular, to quantify the relative importance of a compositional margin at the recruitment stage versus an effort margin on-the-job. The hypotheses specified in our pre-analysis plan (Table 6) refer to selection-in and incentives among placed recruits. Since within-year teacher turnover was limited by design and within-year changes in teacher skill and motivation are likely small, the total effect of P4P in Year 1 can plausibly only be driven by a change in the type of teachers recruited and/or a change in effort resulting from the provision of extrinsic incentives.

Interpreting the total effect of P4P in Year 2 is more complex, however. First, we made no attempt to discourage between-year teacher turnover, and so there is the possibility of a further compositional margin at the retention stage (c.f. Muralidharan and Sundararaman 2011). Experienced P4P may have selected-out the low skilled (Lazear, 2000) or, more pessimistically, the highly intrinsically motivated. Second, given the longer time frame, teacher characteristics could have changed. Experienced P4P may have eroded a given teacher’s intrinsic motivation (as hypothesised in the largely theoretical literature on motivational crowding out) or, more optimistically, encouraged a given teacher to improve her classroom skills. In this section we conduct an exploratory analysis of these dynamic effects.\(^{26}\)

5.1 Retention effects

Does experienced P4P affect retention rates among recruits? To answer this question we look for impacts on the likelihood that a recruit is still employed at midline in February 2017 at the start of the Year 2 (i.e. after experiencing P4P in Year 1, although before the performance awards were announced). Our primary test of this hypothesis is a linear probability model of the form

\[
Pr[employed_{idq2} = 1] = \tau_{E}T_{s}^E + \gamma_q + \delta_d,
\]

where \(employed_{idq2}\) is an indicator variable taking a value of one if teacher \(i\) with subject-family qualification \(q\) in district \(d\) is still employed by the school at the start of Year 2, and \(\gamma_q\) and \(\delta_d\) are the usual subject-family qualification and district indicators.\(^{27}\) As Column 1 of Table 9 reports, our estimate of \(\tau_{E}\) is zero with a randomization inference \(p\)-value of 0.96. There is no statistically significant impact of experienced P4P on the retention rate of recruits; the retention rate is practically identical—at around 80 percent—among recruits experiencing P4P and those experiencing FW. Of course, 20 percent attrition is non-negligible. And the fact that retention rates are similar does not rule out the possibility of an impact of experienced P4P on the type of recruits retained. We turn to this issue below.

Does experienced P4P induce differentially skilled recruits to be retained? To answer this question we use a teacher’s performance on the baseline Grading Task in the primary subject he/she teaches (see Section 3) to obtain an IRT estimate of his/her ability in this subject, denoted \(z_i\). Figure 7 shows two plots of fitted values from a simple (bivariate) linear regression of \(employed_{idq2}\) on \(z_i\). The red, dashed plot uses data on recruits in the experienced P4P arm, while the blue

\(^{26}\)We emphasise that this material in exploratory; the hypotheses tested in this section were not part of our pre-analysis plan. That said, the structure of the analysis in this section does follow a related pre-analysis plan (intended for a companion paper) which we uploaded to our trial registry on October 3 2018 prior to unblinding of our data.

\(^{27}\)Given the re-randomization (and balance checks reported in Section 3), we do not include advertised treatment status as a control. We confirm that experienced treatment impacts do not differ by advertised treatment in our robustness checks—forthcoming in what will be Section 6.
Table 9: Retention of new recruits

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experienced P4P</td>
<td>0.00</td>
<td>-0.04</td>
<td>-0.08</td>
</tr>
<tr>
<td></td>
<td>[0.96]</td>
<td>[0.41]</td>
<td>[0.23]</td>
</tr>
<tr>
<td>Interaction</td>
<td>-0.05</td>
<td>0.16</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[0.38]</td>
<td>[0.36]</td>
<td></td>
</tr>
</tbody>
</table>

Heterogeneity by... Test score DG share sent
Observations 249 238 238

Notes: RI p-values in brackets, representing 2,000 draws of the experienced treatment. All specifications include controls for districts and subjects of teacher qualification.

dotted plot is for recruits in the experienced FW arm. Both plots are upward sloping indicating that it is the low skilled teachers who select-out between Year 1 and 2. Interestingly, this positive relationship is stronger, and indeed is only statistically significantly different from zero, among recruits who experienced FW.

Figure 7: Selection-out on baseline teacher skill, by experienced treatment

To test whether the difference in slopes in Figure 7 is statistically significant we estimate an interacted model of the form

$$\Pr[\text{employed}_{ijt^{2}} = 1] = \tau_{E}T_{s}^{E} + \zeta T_{s}^{E}z_{i} + \beta z_{i} + \gamma_{q} + \delta_{d}. \quad (9)$$

Inference for the key parameter, ζ, is undertaken by performing randomization inference for alternative assignments of the school-level experienced treatment indicator. As Column 2 of Table 9 reports, our estimate of ζ is -0.05, with a randomization inference p-value of 0.38. There is not a significant difference in selection-out on baseline teacher skill across the experienced treatments. In other words, there is no evidence that experienced P4P induces differentially skilled recruits to be retained.
Does experienced P4P induce differentially intrinsically motivated recruits to be retained? To answer this question we use the contribution sent in the framed Dictator Game played by all recruits at baseline, denoted x_i. Figure 8 shows two plots of fitted values from a simple (bivariate) linear regression of employed_{iqsd2} on x_i. The red, dashed plot uses data on recruits in the experienced P4P arm, while the blue dotted plot is for recruits in the experienced FW arm. Both plots are downward sloping indicating that it is the high motivation teachers who select-out between Year 1 and 2. Again, the effect is stronger among recruits who experienced FW.

Figure 8: Selection-out on baseline teacher intrinsic motivation, by experienced treatment

To test whether the difference in slopes in Figure 8 is statistically significant we re-estimate the interacted model in equation (9), replacing z_i with x_i. As Column 3 of Table 9 reports, our estimate of ζ in this specification is 0.16, with a randomization inference p-value of 0.36. There is not a significant difference in selection-out on baseline teacher intrinsic motivation across the experienced treatments—in other words, there is also no evidence that experienced P4P induces differentially intrinsically motivated recruits to be retained.

5.2 Changes in retained teacher characteristics

To assess whether experienced P4P changes within-retained-recruit teacher skill or intrinsic motivation from baseline to endline, we estimate the following ANCOVA specification

$$y_{isd2} = \tau_E T_{s}^{E} + \rho y_{isd0} + \gamma_{q} + \delta_{d} + e_{isd},$$

(10)

where y_{isd2} is the characteristic (raw Grading Task score or framed Dictator Game contribution) of retained recruit i with qualification q in school s and district d at endline (round 2), and y_{isd0} is this characteristic of retained recruit i at baseline (round 0).28 As Column (1) of Table 10 reports, our estimate of τ_E in the endline Grading Task score specification is 0.57, with a randomization inference p–value of 0.63. Our estimate of τ_E in the framed Dictator Game contribution specification is -0.04, with a randomization inference p–value of 0.06. Both estimates are small in magnitude and reject the sharp null only at the 10 percent level, in the case of the Dictator Game allocations to others. Hence, to the extent that contributions in the Dictator Game are positively associated with teachers’ intrinsic motivation, we find no evidence that the rising effects of experienced P4P from Year 1 to Year 2 are driven by positive changes in within-retained-recruit teacher skill or intrinsic motivation, at least on these metrics.

28The raw Grading Task score is measured on a scale of 0-30. To be replaced by IRT estimate in due course.
Table 10: Recruit characteristics at endline

<table>
<thead>
<tr>
<th>Teacher score</th>
<th>DG send</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experienced P4P</td>
<td>0.57</td>
</tr>
<tr>
<td></td>
<td>[0.63]</td>
</tr>
<tr>
<td>Observations</td>
<td>170</td>
</tr>
</tbody>
</table>

Notes: RI p-values in brackets, representing 2,000 draws of the experienced treatment. All specifications include controls for district and subject-of-qualification.

5.3 Decomposing the total effect of P4P in Year 2

The total effect of the P4P contract in Year 2 combines both the advertised and experienced impacts: \(\tau_A + \tau_E \). Our estimate is \(0.05\sigma + 0.16\sigma = 0.21\sigma \) which is statistically significant at the 1 percent level, as indicated in Figure 6. Given our two-tier experimental design, we can say unequivocally that nearly a quarter of the total effect of P4P in Year 2 is accounted for by selection-in at the recruitment stage—a compositional margin that is not typically identified by studies of performance-pay. The remainder of the total effect could be due to selection-out at the retention stage, changes in teacher skill within-retained recruits, changes in effort, or all three. We cannot exploit a design feature to disentangle these effects and so instead turn to the results in Section 5.1 and 5.2. On this basis, it seems unlikely that our estimate of \(\tau_E \) is driven by selection-out at the retention stage—the compositional margin famously highlighted by Lazear (2000). A teacher’s baseline Grading Task score is arguably a more plausible driver of pupil learning than his/her baseline intrinsic motivation as measured by the framed Dictator Game contribution. And we find statistically significant selection-out of low baseline skill teachers in the experienced FW arm but not in the experienced P4P arm. If anything, selection-out runs the wrong way to explain \(\tau_E \). In view of Table 10, it also seems unlikely that \(\tau_E \) is driven by a change in teacher skill from baseline to endline within-retained recruits. We therefore attribute the remaining three quarters of the total effect of the P4P contract in Year 2 to increased effort on-the-job. Of course, this effort margin is net of any motivational crowding out from P4P. To the extent that contributions in the Dictator Game are positively associated with teachers intrinsic motivation, Table 10 suggests that this potential countervailing effect is small in our context.

6 Conclusion

This study has reported on the results of a randomized, controlled trial designed to test for both the compositional and effort-margin responses of a pay-for-performance contract in Rwandan primary schools. The study’s unique two-tier design allows us to decompose the total effect of performance pay into these constituent parts.

Drawing on a theoretical model we defined a narrow set of hypotheses to test in our pre-analysis plan, and used simulations on blinded data to develop high-powered tests of these hypotheses before carrying out the main analysis.

In terms of recruitment, we find that advertisement of the P4P contract changed the composition of the teaching workforce, drawing in individuals who were more money-oriented. Specifically, teachers recruited under P4P exhibit less other-regarding preferences in a framed dictator game.
designed to measure intrinsic motivation. However, these recruits were not less effective teachers. Pooled estimates of the impact of advertised P4P on teacher value added are precisely estimated, and close to zero. If anything, in the second year of the study—when differences in teaching efficacy among recruits emerge more clearly—there is a positive selection effect. Turning to the effort margin, we find significant and economically large effects of the experience of the P4P contract on learning outcomes. This learning gain is apparent both in traditionally constructed value added, as well as in the Barlevy-Neal percentile rank metric that was used in the P4P contract. It is further reflected by gains in both teacher presence and pedagogy, both of which were part of the composite ‘4P’ performance metric. We find no statistically significant differences in teacher attrition across study schools, and detect no negative selection effects of P4P on this retention margin. In fact, qualitative evidence suggests the reverse: the P4P contract was popular among teachers. In a post-evaluation survey, we asked teachers for their overall opinion about the idea of providing bonus payments on the basis of objective measures of performance. More than 1,300 teachers responded, of whom 78 percent had a favourable opinion of performance pay on such an objective basis.

In sum, we find that the recruitment, effort, and retention-margins of performance contracts combine to raise learning quality. In the second year of the study, we estimate the total effect of P4P to be 0.21 standard deviations of pupil learning. One quarter of this impact can be attributed to selection at the recruitment stage, with the remaining three-quarters arising from increased effort.

The interventions studied here were designed to be equivalent in their costs for salary. To consider the scope for scaling up such an approach, we note that the Government of Rwanda has recently decided to require standardized assessments at the end of each primary grade level. To the extent that the measurement of teachers’ inputs might be undertaken by head teachers or other existing staff members at limited costs, this suggests that a P4P scheme like the one studied here could be implemented at scale in a manner that was effectively budget neutral.
Acknowledgements

We thank counterparts at REB and MINEDUC for their advice and collaboration. We are grateful to Katherine Casey, David Evans, Dean Eckles, Frederico Finan, Macartan Humphreys, Pam Jakiela, Julien Labonne, David McKenzie, Berk Özler, and Cyrus Samii for helpful conversations and comments. This project would not have been possible without the contributions of numerous IPA staff members, including Kris Cox, Stephanie De Mel, Olive Karekezi Kemirembe, Doug Kirke-Smith, Emmanuel Musafiri, and Phillip Okull. Claire Cullen, Robbie Dean, Ali Hamza, Gerald Ipapa, and Saahil Karpe provided excellent research assistance. Financial support for the research on this project was provided by the U.K. Department for International Development (DfID) via the International Growth Centre and the Economic Development and Institutions Programme, Oxford University’s John Fell Fund, and the World Bank’s Strategic Impact Evaluation Fund (SIEF) and REACH trust fund. The findings in this report are the opinions of the authors, and do not represent the opinions of the World Bank, its Executive Directors, or the governments they represent. All errors and omissions are our own.
References

Chingos, Matthew M and Martin R West, “Do more effective teachers earn more outside the classroom?,” Education Finance and Policy, 2012, 7 (1), 8–43.

Stallings, Jane A, Stephanie L Knight, and David Markham, “Using the Stallings Observation System to investigate time on task in four countries,” World Bank Report No. 92558 2014.

Appendix A Theory

This appendix sets out a simple theoretical framework that closely mirrors the experimental design described in Section 2. We used this framework as a device to organize our thinking when choosing what hypotheses to test in our pre-analysis plan (as distinct from the blinded data that we used when choosing how to test). Specifically, the framework helped us to make concrete terms frequently used in the literature, such as ‘teacher skill’, ‘teacher intrinsic motivation’, ‘selection’, and ‘incentives’, and to develop distinct tests for the compositional (selection) and effort (incentive) margin effects on teacher performance. Note that we did not view the framework as means to deliver sharp predictions for one-tailed tests.

Model

Preferences Individuals are risk neutral and care about compensation w and effort e. Effort costs are sector-specific. Payoffs in the education sector are given by

$$V^E(w, e) = w - e^2 + \tau \cdot e,$$

while payoffs in any other sector are given by

$$V^O(w, e) = w - e^2.$$

Here, we think of $\tau \geq 0$ as intrinsic motivation, one dimension of an individual’s ‘type’. Irrespective of where an individual works, her effort generates a performance metric

$$m = e \cdot \theta + \varepsilon.$$

The parameter $\theta \geq 1$ can be thought of as ability, a second dimension of an individual’s type.

Contracts As described in the Study Design section, individuals belong to one of four subgroups, as shown in the 2x2 matrix below.

<table>
<thead>
<tr>
<th></th>
<th>Advertised</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>FW</td>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>P4P</td>
<td>c</td>
<td>d</td>
</tr>
</tbody>
</table>

Different compensation schemes are available depending on advertised treatment status. In the advertised P4P treatment, individuals choose between: (i) an education contract of the form, $w^G + B$ if $m \geq \bar{m}$, or w^G otherwise; and (ii) an outside option of the form w^0 if $m \geq \bar{m}$, or 0 otherwise. In the advertised FW treatment, individuals choose between: (i) an education contract of the form w^F; and (ii) the same outside option. In our experiment, the bonus, B, was valued at RWF 100,000, and the fixed-wage contract w^F exceeded guaranteed income in the P4P contract w^G by RWF 20,000. We assume that $w^O > B$ and $w^G + B > w^O > w^F$. The relationship between the performance metric and compensation in the three contractual options is illustrated in Figure A.1.
The timing of the game is as follows.29

1. Outside options and education contract offers are announced.
2. Nature chooses type (τ, θ).
3. Individuals observe their type (τ, θ), and choose which sector to apply to.
4. Employers hire applicants.
5. \textit{Surprise} re-randomization occurs.
6. Individuals make effort choice e.
7. Performance metric m is realized, with $\varepsilon \sim U[\underline{\varepsilon}, \bar{\varepsilon}]$.
8. Compensation paid in line with (experienced) contract offers.

\textbf{Analysis}

As usual, we solve backwards, starting with effort choices.

\textbf{Effort incentives} Effort choices under the three compensation schemes are:

\begin{align*}
e^F &= \frac{\tau}{2} \\
e^P &= \frac{\theta B}{2(\bar{\varepsilon} - \underline{\varepsilon})} + \frac{\tau}{2} \\
e^O &= \frac{\theta w^O}{2(\bar{\varepsilon} - \underline{\varepsilon})}.
\end{align*}

We make two observations. First, intuitively, effort incentives are higher under P4P than under FW. Second, effort in the teacher performance contract, e^P, is only higher than effort in the outside option, e^O, if intrinsic motivation τ is sufficiently high. Notice this result arises because the outside option—perhaps usefully thought of as a private-sector job—has greater wage flexibility than the standard teaching contract. The ordering $B < w^O$ captures the greater stakes in the private-sector contract.

29For simplicity, we begin by assuming that there is no systematic demand-side selection: employers hire at random.
Supply-side selection Starting with the advertised P4P treatment, for a given θ, we can define a motivational type τ^* who is indifferent between sectors:

$$\Pr \left[\theta e^P + \varepsilon > \bar{m} \right] \cdot B + w^G - (e^P)^2 + \tau^* e^P = \Pr \left[\theta e^O + \varepsilon > m \right] \cdot w^O - (e^O)^2.$$

Similarly, in the advertised FW treatment, for a given θ, we can define a motivational type τ^{**} who is indifferent between sectors:

$$w^F - (e^F)^2 + \tau^{**} = \Pr \left[\theta e^O + \varepsilon > m \right] \cdot w^O - (e^O)^2.$$

Figure A.2 illustrates these selection patterns, for a numerical example with $\varepsilon = -5$, $\bar{\varepsilon} = 5$, $m = 1$, $\bar{m} = 4.5$, $w^O = 50$, $B = 40$, $w^G = 15$. Here, we see a case of positive selection on intrinsic motivation and negative selection on ability under both treatments. But less negative selection on ability under P4P than under FW. Given the single crossing of $\tau^{**}(\theta)$ and $\tau^*(\theta)$ (and distributional assumptions), we have:

$$\tau^P \equiv E[T | T > \tau^*(\Theta)] > \tau^F \equiv E[T | T > \tau^{**}(\Theta)]$$

$$\theta^P \equiv E[\Theta | T > \tau^*(\theta)] > \theta^F \equiv E[\Theta | T > \tau^{**}(\Theta)].$$

In this case, both expected intrinsic motivation and expected ability are higher among P4P applicants than among FW applicants.

Empirical implications

Our basic framework formalizes two claims circulating in the survey literature (e.g., Dal Bó and Finan 2016). The first is that P4P creates incentives: for a given (τ, θ) type, on-the-job effort is higher under P4P than FW, $e^P > e^F$. The second, and of more relevance for this paper, is that P4P induces selection at the recruitment stage: at the time of application, average intrinsic motivation and average skill are higher among individuals recruited under P4P than FW, $\tau^P > \tau^F$ and $\theta^P > \theta^F$.

A central contribution of this paper is that, by virtue of our two-tiered RCT, we can isolate selection in one of our observable measures, namely the incentivised performance metric m. Specifically, using the 2x2 treatment matrix, we can define two selection effects. First, the compositional

30It is worth noting that most of the prior literature does not distinguish explicitly between selection at the recruitment stage and selection at the retention stage, as we plan to do across our two papers.
effect of advertised P4P for experienced FW (subgroups a & b):

\[
E[m|\text{advertised P4P, experienced FW}] - E[m|\text{advertised FW, experienced FW}] = e^F(\tau^F) \cdot \theta^F - e^F(\tau^F) \cdot \theta^F.
\] (11)

And second, the compositional effect of advertised P4P for experienced P4P (subgroups c & d):

\[
E[m|\text{advertised P4P, experienced P4P}] - E[m|\text{advertised FW, experienced P4P}] = e^P(\tau^P) \cdot \theta^P - e^P(\tau^F) \cdot \theta^P.
\] (12)

We view the primary role of the theory as pedagogical—to enable us to define these two compositional effects and to show how (power allowing) they can be estimated via a simple comparison of means. The theory also delivers predictions in terms of sign and magnitude of these effects, and they are worth stating here. Both compositional effects are positive, and the second is larger than the first. If the empirical analogue of (11) and/or (12) is positive, then performance contracts can attract better teachers, where here a “better” teacher means an individual capable of delivering higher on-the-job teaching performance by virtue of his/her prior characteristics.

Using the 2x2 treatment matrix, we can also define two incentive effects. First the incentive effect of experienced P4P for advertised FW (subgroups a & c):

\[
E[m|\text{experienced P4P, advertised FW}] - E[m|\text{experienced FW, advertised FW}] = e^P(\tau^F) \cdot \theta^F - e^F(\tau^F) \cdot \theta^F.
\] (13)

And second, the incentive effect of experienced P4P for advertised P4P (subgroups b & d):

\[
E[m|\text{experienced P4P, advertised P4P}] - E[m|\text{experienced FW, advertised P4P}] = e^P(\tau^P) \cdot \theta^P - e^F(\tau^P) \cdot \theta^F.
\] (14)

Both incentive effects are positive, and again the second is larger than the first.